
“Lean and Efficient Software:

Whole-Program Optimization of Executables”

Project Summary Report #2
(Report Period: 12/25/2012 to 3/24/2013)

Date of Publication: April 3, 2013

© GrammaTech, Inc. 2013

 Sponsored by Office of Naval Research (ONR)

Contract No. N00014-12-C-0521

Effective Date of Contract: 09/25/2012

Requisition/Purchase Request/Project No.

12PR10102-00 / NAVRIS: 1100136

 Technical Monitor: Sukarno Mertoguno (Code: 311)

 Contracting Officer: Casey Ross

Submitted by:

Principal Investigator: Dr. David Cok

531 Esty Street

Ithaca, NY 14850-4201

(607) 273-7340 x. 146

dcok@grammatech.com

Contributors:

 Dr. David Cok Dr. Alexey Loginov

 Tom Johnson Brian Alliet

 Dr. Suan Yong David Ciarletta

 Dr. Junghee Lim Frank Adelstein

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Financial Data Contact:

Krisztina Nagy

T: (607) 273-7340 x.117

F: (607) 273-8752

knagy@grammatech.com

Administrative Contact:

Derek Burrows

T: (607) 273-7340 x.113

F: (607) 273-8752

dburrows@grammatech.com

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 2013 2. REPORT TYPE

3. DATES COVERED
 00-12-2012 to 00-03-2013

4. TITLE AND SUBTITLE
Lean and Efficient Software:Whole-Program Optimization of
Executables

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
GammaTech,531 Esty Street,Ithaca,NY,14850

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

21

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

2

Data Subject to Restrictions on Cover Page.

1 Financial Summary

Total contract amount (1 year) $399,984.00

Costs incurred during the performance
period (1/1/2013-3/31/2013)

$177,882.41

Costs incurred to date (to 3/31/2013) $214,135.73

Estimated to complete $185,848.27

2 Project Overview
Background:
Current requirements for critical and embedded infrastructures call for significant increases
in both the performance and the energy efficiency of computer systems. Needed
performance increases cannot be expected to come from Moore’s Law, as the speed of a
single processor core reached a practical limit at ~4GHz; recent performance advances in
microprocessors have come from increasing the number of cores on a single chip. However,
to take advantage of multiple cores, software must be highly parallelizable, which is rarely
the case. Thus, hardware improvements alone will not provide the desired performance
improvements and it is imperative to address software efficiency as well.

Existing software-engineering practices target primarily the productivity of software
developers rather than the efficiency of the resulting software. As a result, modern software
is rarely written entirely from scratch—rather it is assembled from a number of third-party or
“home-grown” components and libraries. These components and libraries are developed to
be generic to facilitate reuse by many different clients. Many components and libraries,
themselves, integrate additional lower-level components and libraries. Many levels of library
interfaces—where some libraries are dynamically linked and some are provided in binary
form only—significantly limit opportunities for whole-program compiler optimization. As a
result, modern software ends up bloated and inefficient. Code bloat slows application
loading, reduces available memory, and makes software less robust and more vulnerable. At
the same time, modular architecture, dynamic loading, and the absence of source code for
commercial third-party components make it hopeless to expect existing tools (compilers and
linkers) to excel at optimizing software at build time.

The opportunity:
The objective of this project is to investigate the feasibility of improving the performance,
size, and robustness of binary executables by using static and dynamic binary program
analysis techniques to perform whole-program optimization directly on compiled programs.
The scope includes analyzing the effectiveness of techniques for specializing library

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

3

Data Subject to Restrictions on Cover Page.

subroutines, removing redundant argument checking and interface layers, eliminating dead
code, and improving computational efficiency. The contractor expects the optimizations to
be applied at or immediately prior to deployment of software, allowing them to tailor the
optimized software to its target platform. Today, machine-code analysis and binary-rewriting
techniques have reached a sufficient maturity level to make whole-program, machine-code
optimization feasible. These techniques open avenues for aggressive optimization that
benefit from detailed knowledge of an application’s composition and its environment.

Work items:

We expect to develop algorithms and heuristics to accomplish the goals stated above. We
will embed our work in a prototype tool that will serve as our experimental and testing
platform. Because “Lean and Efficient Software: Whole-Program Optimization of
Executables” is a rather long title, we will refer to the project as Layer Collapsing and the
prototype tool as Laci (for LAyer Collapsing Infrastructure).

The specific work items are listed below:

1. The contractor will investigate techniques for specializing libraries and third-party
components—i.e., techniques for deriving custom versions of libraries and components
that are optimized for use in a specific context.
1.1. The contractor will evaluate program-slicing and program-specialization technology

developed independently at the referenced university.
1.2. The contractor will investigate techniques for recovering intermediate program

representation (IR) required for slicing and specialization techniques. The contractor
will focus on the following tasks:

1.2.1. Using static binary analyses for IR recovery.
1.2.2. Using hybrid static and dynamic binary analyses for IR recovery.
1.2.3. Studying trade-offs between the two approaches.
1.2.4. Identifying the approach to be implemented in a prototype tool.

2. The contractor will attempt to implement a prototype optimization tool. This objective
can be subdivided into the following subtasks:
2.1. Implement IR-recovery mechanisms.
2.2. Extend and improve the implementation of the slicing or specialization technology

transferred from the university.
2.3. Investigate the tradeoff between improved performance through specialization and

the resulting increase in executable size.
2.4. Investigate options for handling dynamically linked components and libraries.

3. The contractor will investigate techniques for further optimization of executables and for
collapsing library interface layers. The contractor will consider:
3.1. Selective inlining of library functions.
3.2. Specialization of executables to the target platform.
As time and resources permit, the contractor will attempt to implement these additional
techniques in the prototype optimization tool.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

4

Data Subject to Restrictions on Cover Page.

4. The contractor will evaluate the prototype optimization tools implemented or received
from the university experimentally. The contractor will use synthetic benchmarks, as well
as real-world open-source software for the evaluation.

5. The contractor will maintain project documentation and produce comprehensive
progress reports and a detailed final report.

3 Staffing
The following personnel are participating in this project.

Dr. David Cok is the PI and is responsible for program management, infrastructure and the
user-facing aspects of the resulting tool. He is also the PI for GrammaTech’s effort on the
DARPA Rapid project; that project is producing some key underlying technology that is being
used by the Layer Collapsing project.

Dr. Alexey Loginov is the key architect of the binary analysis infrastructure.

Dr. Suan Yong and Dr. Junghee Lim are senior scientists having detailed knowledge of the
binary analysis infrastructure and algorithms.

Brian Alliet is the principal implementation engineer.

Tom Johnson is the resident expert on the API for editing the Intermediate Representation of
an analyzed binary. He will be consulted regarding the current state and designs for
improvement of this API.

David Ciarletta and Frank Adelstein are contributing to infrastructure development and
measuring overall algorithm and tool robustness.

4 Accomplishments during the reporting period

4.1 Overall plan

The principal goals for the first three months of the project were to plan the details of the
project work, to assess the applicability of existing tools and algorithms, and to perform
some feasibility experiments.

In the three month period just ending, we

 performed studies of possible useful transformations,

 implemented some of them,

 implemented the infrastructure to test that the transformations do not alter the valid
behavior of the transformed programs, and

 continued to review and exercise the specialization implementation from UWisconsin.

The following sections provide details on these accomplishments.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

5

Data Subject to Restrictions on Cover Page.

4.2 Transformations

At the heart of the Laci system will be a set of transformations that can be performed on an
executable binary program, possibly accompanied by dynamically loaded libraries. Each
transformation is expected to preserve all valid functionality of the program, but to provide
some benefits. We are measuring benefits in three areas. These three goals may be
differently emphasized in different contexts.

 Changes in size of the executable – reductions in size are expected to translate into
better use of resources and better efficiency, e.g., due to decreasing the load on the
instruction cache

 Changes in runtime performance – better runtime performance is always desired by
users, and is also correlated with lower power consumption

 Changes in security vulnerabilities – transformations induce diversification, making
the executable harder to exploit; additionally, removing some procedures from the
executable reduces the number of return statements, and thus the number of
potential ROP gadgets available to attackers.

We address each potential transformation with the following steps:

 Limit studies: where possible, before beginning to implement a transformation,
estimate how much benefit is reasonable to expect from the transformation. Note
that modern compilers implement many very sophisticated optimizations, so some
transformations may turn out to yield minimal benefit. It is best to know how much
benefit to expect before diving into implementation work; having an estimate also
helps to evaluate the success of the implemented transformation.

 Transformation: implement the actual transformation on the binary executable (and
libraries, if relevant), using the GrammaTech’s CodeSurfer Intermediate
Representation.

 Candidate selection: devise the decision procedure that indicates when to apply the
transformation. For example, an inlining transformation is able to inline a procedure
at any call site. Candidate selection will decide when to apply the transformation. A
reasonable approach may be to inline only those procedures that are called exactly
once, producing slight size, performance, and security improvements. However, it
may be beneficial to apply inlining to procedures that are called more than once,
increasing the application size, but providing more performance and security benefit.
Candidate selection will embody algorithms for such decisions.

 Evaluation on crafted applications: Validate that the transformation achieves its
benefits on subject applications designed especially to demonstrate the algorithm.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

6

Data Subject to Restrictions on Cover Page.

 Evaluation on a test suite: We are compiling a test suite consisting of a sampling of
realistic executables. This evaluation will provide data on how successful the
transformation can be expected to be in practice.

 Threats to validity: The transformation or the heuristics about when to apply it may
intentionally or by necessity exhibit limitations. We intend to document the situations
in which the transformation is expected to be sound (i.e., preserve all valid behaviors
of the program) and when it may not be. It is possible that a transformation that is
not sound on some classes of applications may have still have significant benefit.

The final dimension of our study is the set of transformations themselves. We list candidate
transformations (or variants) here and discuss them further in the subsections below.

 The NULL transform

 Dead code removal

 Procedure inlining

 Converting dynamically linked functions to statically linked ones (aiming to remove
shared objects and dynamically loaded libraries)

 Specialization (possibly including partial evaluation)

4.2.1 The NULL transform

The NULL transform does not perform any changes to the structure of the program.
However, the program is analyzed into an Intermediate Representation and then written out
again. As a result, the ordering of basic blocks and procedures may change, failures to
identify relocatable symbols may result in a faulty end result, among other changes. Thus the
NULL transform is a test of the basic Laci infrastructure: if an application still performs
correctly after the NULL transform, then the Laci infrastructure is working correctly (or at
least correctly enough for that particular application).

Status: The NULL transform is applied as part of nightly tests to the whole test suite and each
test application passes all of its regression tests.

4.2.2 Dead code removal

Transformation. The dead code transform removes code from the subject program that is
not executed. Dead code can consist of procedures that are never called or basic blocks
within a procedure to which control is never transferred. Closely related to dead code
removal is the elimination of data areas that are never used.

Our first target is entire unused procedures. The transformation to eliminate these is
straightforward, since it just consists of eliminating the procedure – no other code needs
adjusting (besides the usual relocation of code that happens when object modules are
assembled into a working executable).

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

7

Data Subject to Restrictions on Cover Page.

The actual transformation does more than just check whether a procedure is called. Rather,
this transformation removes code that is statically known not to be reachable via the control-
flow graph from the entry point (usually main). Given an object file with three procedures,
only one of which is used, linkers will nearly always link the two unused procedures, simply
because they are in the same object file (object files are generally treated as an atomic unit).
With the control-flow information provided by our binary analysis, we can determine that
these extra procedures aren't reachable, and remove them. The dead code removal
transformation works similarly to a garbage collection algorithm. It initially marks the entry
point (e.g., main) as reachable, then continues traversing the control-flow graph, recursively
marking procedures as reachable. When the algorithm terminates, any node left unmarked is
dead and can be removed. Note that data references have to be taken into account as well.
For example, mov eax, proc1 makes proc1 reachable, even if control-flow analysis may miss
indirect calls to proc1 enabled by the instruction.

Applying the transformation. Knowing when to apply the transformation is a bit trickier. One
can readily determine whether there are any direct calls to a procedure from elsewhere in
the program. Note that there may be groups of procedures that mutually call each other but
no procedure in the group is called, and the group as a whole is dead.

However, procedures can also be called indirectly. Knowing the values of all function pointers
requires a much more complicated analysis; in general, it is undecidable. A conservative
approach can note when the address of a procedure is taken, even if it cannot determine
whether that address is ever used. However, even then, a particularly obfuscated program
could construct function pointers from integer operations. Thus there is some soundness risk
in applying this transformation.

Benefits. This transformation is expected to significantly reduce the size of an executable and
improve security by reducing the number of ROP gadgets. No direct effect on runtime
performance is expected; some speedup may result because there is less code to read from
memory when the program starts and instruction-cache locality may be improved.

Limit study. To determine how much value may be obtained by dead code removal we
performed the following study. Static and dynamic analysis data was collected to gather
statistics on the frequency of calls for each procedure in the test executables. A total of 104
executables from the GNU coreutils package are regularly analyzed by the test infrastructure
against completed transformations (currently the NULL transform). The analysis gathers
information about procedures in each executable to identify if they have formal arguments, if
there are local variables, how many places the procedure is called from, and if any of those
call sites use constants as one or more of the arguments. Error! Reference source not found.
shows a histogram of the number of procedures with X call sites (where X is the value on the
x-axis) across all of the coreutils executables. A total of 5540 thunks are excluded from this
data set. Thunks (small delegating procedures) make up about 1/3 of the total procedures
across all executables analyzed and will be removed when the executable is rewritten.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

8

Data Subject to Restrictions on Cover Page.

Figure 1 - Total Procedures by # of Call Sites for GNU coreutils

Of immediate note is the number of procedures with no call sites (3,877, 38.1%). This is
largely due to the use of shared objects among the executables in the coreutils package.
When any procedure from one of those shared objects is referenced, the entire object is
linked into the executable.

Results. The dead-code-removal transformation was applied to our test executables. The
results are shown in the following graph.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

9

Data Subject to Restrictions on Cover Page.

Figure 2 - Reduction in executable size from dead-code removal

The net result on this data set is that the transformation reduced the size of executables by
4-12%, with an average of 7-8%. We also counted the reduction in the number of
procedures, shown in Figure 3.

Figure 3 - Reduction in the number of procedures from dead-code removal

The reduction in number of procedures ranged from 20-65%, with an average of about 47%.
The procedures removed are on average smaller than the average procedure in the
applications.

4.2.3 Inlining procedures

Transformation. The inlining transformation replaces a call to a procedure with the actual
text of the procedure, removing control transfer (usually effected by call or jmp
instructions). The complete application of the transformation can be carried out using the

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

10

Data Subject to Restrictions on Cover Page.

following intermediate steps (not all of these steps are necessary for improved performance,
power consumption, and security):

 Replace the call to the callee and return to the caller with jump instructions.

 Remove the jump instructions and reorder the code so that the instructions of the
callee are directly between their immediately preceding and following instructions in
the caller.

 Combine the activation records of the two procedures so that the stack size is
adjusted just once to account for the callee’s local variables and saved registers.
Adjust the stack to account for the removal of some operations, such as the saving of
the return address.

 Remove what used to be the copies of values to stack locations that held the actual
arguments of the callee. Change the callee to use the values directly from the caller’s
activation record (or as global memory locations). This can be accomplished by
analyses such as copy propagation and constant folding.

 Adjust the stack to avoid saving space for the return address.

 Eliminate unnecessary register-save operations, e.g., registers saved by the caller that
are not modified by the callee.

4.2.3.1 Inlining procedures without cloning

Applying the transformation. This transformation can be applied whenever a procedure is
called just once and its address is never taken. Some of the same caveats apply as for the
analysis of calls to determine dead code.

Benefits. This transformation is expected to decrease the size of an executable and increase
its runtime performance only slightly. (The improvement comes from avoiding unnecessary
parameter marshaling and control transfers.) However, the transformation will reduce the
number of return instructions and therefore improve security by reducing the number of
ROP gadgets.

Limit study. The limit study results for dead code above also contain information about
inlining possibilities. In the data set we analyzed, 3007 (29.5%) of the procedures had only
one call site and are reasonable candidates for inlining.

Results. This transformation has been successfully implemented. The number of procedures
removed equals the number of RET instructions removed, and is a measure of the security
improvement.

4.2.3.2 Inlining procedures with cloning

Transformation. Inlining can be applied even if a procedure is used in more than one place: a
separate copy of the procedure can be inlined in each location where it is used.

Applying the transformation. Just as for inlining without cloning, this transformation can be
applied wherever the callers of a procedure are precisely known and its address is never

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

11

Data Subject to Restrictions on Cover Page.

taken and used. The challenge is to balance the size of the inlined procedure and the number
of inlined clones against the resultant increase in executable size.

Benefits. This transformation is expected to increase the size of the executable and decrease
the number of ROP gadgets. The direct effect on performance will stem from reducing
parameter passing and control transfers.

Results. We have not yet implemented the cloning operation.

4.2.4 Converting dynamically linked functions to statically linked

Benefits. Many library routines are made available to executables as shared objects or as
dynamically loaded libraries. The advantage of this system design is that, when multiple
executables use the same routines, the system need load those routines into memory only
once. If each routine were linked statically into each executable, the sizes of all of the
executables would increase significantly. However, the presence of shared objects means
that there are also many procedures that are part of the address space of an executable but
are not used by it; thus there is dead code and an increased number of possible ROP gadgets.

Transformation. The transformation is to statically link in only the needed functions from a
dynamically loaded library module, removing the need to use shared objects and DLLs. This
requires essentially reimplementing (or reusing) much of the functionality of the linker and
loader.

Applying the transformation. The transformation can be applied whenever the analysis can
be confident that it knows which of the procedures in a shared object or DLL are called and at
what call site. The benefit of the transformation to the transformed application is easy to
understand. However, real-world applications of the transformation need to take into
account the effect on the whole system: will other applications run more slowly because the
extra copies of previously shared code affect the virtual memory and the instruction cache.
Distinguishing standard from application-specific libraries may provide an acceptable answer.

Limit study. The limit study above identified a large fraction (38%) of procedures that were
unused; most of these are from shared objects.

Results. Implementation of this transformation is expected to begin in the next performance
period.

4.2.5 Specialization and partial evaluation

Specialization and partial evaluation are terms that are often used to refer to similar
techniques (we will adhere to the common practice of viewing partial evaluation as a kind of
specialization, as will be elaborated below). The primary goal of specialization is to improve
the runtime cost of a program by optimizing the program’s code for the restricted context in
which the program components (e.g., functions) are used. These are some example use
cases:

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

12

Data Subject to Restrictions on Cover Page.

 A program performs many computations but only some of those computations affect
the program outputs (e.g., some command-line processing has no effect on the
output or observable side effects). Instructions that do not affect the outputs can be
removed.

 General purpose library routines may be used in just a few contexts within a program.
As a result, some of the instructions within the library routine may be unused and
removable. For example, perhaps a procedure tests that a given argument is non-null,
issuing an error message if it is null. If analysis shows that in all of the calling contexts
in a subject application the caller assures that the argument is indeed non-null, then
the error-checking code within the library routine can be removed.

 Values known at load time (e.g., what kind of a platform a general library routine is
being executed on) may enable the more general kind of specialization when
instructions are partially evaluated to produce simpler or more efficient specialized
code.

These transformations can be implemented with varying degrees of complexity.

 A dependence-based specialization considers only the data and control dependences
within a program, given its limited context of use, and does not try to concretely or
symbolically evaluate the program. This can provide a conservative amount of code
reduction. This is implemented in UW’s specialization-slicing prototype.

 Partial evaluation usually refers to specialization that involves simplifying code based
on information known statically. For instance, constant propagation can be used to
simplify uses of a procedure’s argument that is known statically. Partial evaluation
begins with binding-time analysis that determines the division of arguments to a
function into those known statically and those determined only at runtime.

 Polyvariant specialization (or partial evaluation) is capable of creating multiple copies
of a procedure specialized to multiple distinct contexts (i.e., different constant values
for a given argument known statically). Transformations of copies can be aggressive,
as they can be tailored to a single context. However, the gain needs to be balanced
against the indirect costs of creating many similar forms of a procedure.

 Polyvariant-division specialization (or partial evaluation) is prepared to consider
multiple divisions of arguments into statically known and dynamically determined.
This requires the ability to create multiple copies of the procedure to be specialized.
Prof. Reps’s group at UW Madison intends to work with GrammaTech to extend the
specialization-slicing prototype into a polyvariant and polyvariant-division partial-
evaluation tool.

Limit study. One initial study of the possibilities of specialization was to observe in our data
set how frequently the arguments to procedures are constants and which constant values
were used. These locations would be potential targets for specialization via partial
evaluation. Figure 4 displays the histogram filtered for procedures with at least one call site
that uses a constant argument. By selecting one of the bars in the histogram we can then drill
down into the data to see details on each call site and determine the number of specialized

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

13

Data Subject to Restrictions on Cover Page.

copies that would be required. For example, procedure gnu_mbswidth in the dir executable
is called 6 times with an explicit zero passed as the second argument. This provides an
example of a prime target for specialization via partial evaluation because the original
procedure could be replaced by one specialized copy.

Figure 4 – Call Site Histogram and Detail Table Filtered for Procedures with a Call Site with a
Constant Argument

Status. This transformation is under study and has not yet been implemented.

4.3 Evaluation of specialization slicing

During this reporting period we evaluated both the ideas and the implementation behind the
work on Specialization Slicing done by our collaborators at the University of Wisconsin1.

The main contribution of that work is an algorithm for performing polyvariant specialization.
The technique has a reasonably efficient polynomial cost in practice (while in theory there is
a possibility of exponential explosion). The specialization is based on slicing, i.e., by following

1 Aung, M., Horwitz, S., Joiner, R., and Reps, T., Specialization slicing. TR-1776, Computer
Sciences Department, University of Wisconsin, Madison, WI, October 2012. Submitted for
journal publication.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

14

Data Subject to Restrictions on Cover Page.

dependence edges only, and does not simplify code based on the values of constants and
variables. There may be benefit to combining this approach with a partial-evaluation-based
approach that considers values. UW and GrammaTech intend to pursue this further.

The prototype implementation targets C programs, using CodeSurfer/C as a front end. We
have imported a copy of Wisconsin’s implementation into our code repository, and are
working to reproduce the results presented in their paper. Thereafter, we’ll consider several
possible tasks:

1. Improving the performance of the prototype, which at times was limited by the
specific version of CodeSurfer available to UW. Given that we have full access to the
CodeSurfer source code, we can make improvements within CodeSurfer to support
operations needed by this work.

2. Adapt the work to target x86 binaries. Given that the work uses the CodeSurfer
framework, it already leverages some existing common infrastructure that supports
both C and x86 programs. However, peculiarities of analyzing binaries must be
accounted for, like safely excluding dependence edges induced by updates to the
stack pointer, which would normally (in a naïve slicing implementation) result in poor
quality slices (slices that are too big, effectively including the entire program).

4.4 Rewriting infrastructure

The program transformations that we are implementing as part of Laci are built on a
foundation of rewriting operations on the basic Intermediate Representation. For the
purpose of Laci, we need additional rewriting operations – in particular deletion operations.
Such operations are non-trivial because there is a great amount of interdependent analysis
results and data tables; changing the IR requires appropriately updating all related data (or
recomputing it from scratch).

In this reporting period, we improved the pretty printer and identified and fixed IR problems
that caused rewriting to fail. Over a dozen different types of IR problems were identified and
test cases were created for them. A mechanism for providing "user hints", that is assembly-IR
hints provided by the user in an external human readable file, was created to allow us to
quickly work around the problems, and identify exactly what extra information or
computation is needed to overcome them. Hints were created for all the microtests for the
IR problems identified, as well as all of coreutils, allowing them all to rewrite successfully and
pass the regression tests.

Using the number and frequency of the hints required for the various tests, we identified the
IR problems that were most prevalent and began to address them. The most prevalent
problem was misidentifying operands as numeric instead of symbolic (e.g., lea eax,
[eax*4+0x1234], where 0x1234 is an address in the data segment). We developed a
heuristic to identify these cases (which while not entirely sound, is justified by all our
experimentation to date) and correct the IR. A handful of other more minor IR problems

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

15

Data Subject to Restrictions on Cover Page.

were also fixed (including data vs. code confusion, jump tables misidentified, and shared-
library imports misidentified).

Other accomplishments include optimizing instruction selection for instructions with multiple
encodings and support for removing code (identified as dead) from our IR.

Next, we give more details on improvements to the rewriting infrastructure carried out
during this performance period.

The virtual memory addresses of code and data in transformed binaries are nearly always
different from their initial values. This can simply be due to reordering existing code (which
may happen as a side effect of the machine code to CodeSurfer IR translation, or
intentionally to improve security), or due to the removal of dead code and data from the
binary. When code and data moves, all references to their old locations must be updated to
reference the new locations. This is accomplished by making memory references symbolic in
the IR. For example: mov eax,[0x1234] might be represented as mov eax,[global_var_1]
in the IR. Which indicates that we want to load the value of the global_var_1, wherever it is
placed, not necessarily what is at address 0x1234.

Unfortunately identifying references which should be symbolic is difficult. In the above
example it is relatively straightforward because the instruction explicitly dereferences
0x1234 (accessing the data at that memory location). However, if instead the instruction
were mov eax, 0x1234, it would be generally impossible to decide whether it’s an address
(demanding a symbol) or a literal value without addition information. This is because the
compiler could generate such an instruction for C statement void *p = &global_var_1, as
well as int x = 0x1234. We developed heuristics that intend to distinguish between these
two cases and mark operands as symbolic where desired. The heuristics take into account a
variety of potential hints including the range of valid addresses in the binary, the alignment
of the value (e.g., pointers in the data section are always four-byte aligned), and the distance
from known symbols (e.g., information gathered from the symbol table, if provided).
According to our evaluation so far, these heuristics work remarkably well in practice.

The x86 ISA has multiple encodings (which are functionally equivalent, but are represented
by different byte sequences) for some instructions. For example, mov eax, 42 can be
encoded using a four-byte immediate for the literal value 42, or a one-byte immediate. They
both accomplish the same thing, but the former takes three more bytes to encode. Our
intermediate representation did not previously distinguish between these encodings for
simplicity. However, when transforming a binary, it is important not to use less optimal
encodings. Since some of this information was previously lost in the IR, our code generator
had to redo some of these optimizations to avoid creating larger binaries. We added support
for a handful of alternate encodings (preferring the optimal size for immediate values) to our
code generator, and with additional IR support we can now emit byte-for-byte—modulo
code reordering—identical binaries when no other transformations are performed.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

16

Data Subject to Restrictions on Cover Page.

The dead code removal transformation described earlier motivated the development of
support for removing complete procedures from our IR. While dead code removal could be
implemented (and indeed, initially was) as a filter on the code to be emitted following
transformation, it is more naturally implemented as a modification of the IR. This means that
the code generator no longer has to be aware of the dead code removal pass, and later
transformations can take advantage of the results of dead code removal (for example, a
procedure with two call sites, one of which is dead, can now be subject to inlining if the
inlining transformation doesn't see the dead call site). We have implemented support for
removing arbitrary procedures (as well as individual instructions or basic blocks within
procedures) from our IR. These removals must be done in a way that doesn't invalidate the
CFG. For example, a procedure can only be removed if it has no callers. The implementation
ensures that removing a procedure is a sound transformation.

4.5 Evaluation infrastructure

An important aspect of developing a successful Laci prototype is to establish a common
evaluation approach that can track the success and performance gains of applying
optimizations to an executable. In January, a testing and performance evaluation framework
was built to establish a baseline and track progress on the development of the prototype.
The test infrastructure supports submission of test cases that specify transformations to
apply to target executables. Once submitted, the test cases are run on a daily basis and test
results are recorded using existing GrammaTech test infrastructure. The current tests apply a
transformation to an executable, performing optional IR validation if specified. If the
transformation is successfully applied (i.e., a new executable is written), then user-defined
tests are run against each version of the executable (pre- and post- transformation). Any
discrepancies in test results are reported as a failure. Additionally, system-resource
utilization metrics are collected for each test run on each version of the executable and
average changes in utilization profiles are reported. These metrics will be expanded as
project objectives are refined by initial investigations, but establish a solid baseline upon
which general gains in performance, size and security can be tracked as transformations are
developed. The test infrastructure is currently being populated with both small sample
programs that test the soundness of the IR being generated and with a set of real-world
executables that currently consists of the GNU coreutils package. As transformations are
developed they can be tested against these and other executables added to the
infrastructure.

The test and performance evaluation framework was expanded in February to support limit
studies to guide the prioritization of transformations to prototype, as described above. In
March, we identified additional applications to add to the test and performance evaluation
framework including: bzip2, cryptopp, glut, libpng, and Python. These applications and their
test suites will be used to enhance the validation of our prototype transformations and
extend our limit studies to larger user applications.

Thus, currently, we have a regression suite consisting of

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

17

Data Subject to Restrictions on Cover Page.

 More than 100 coreutils programs and their regression suites

 Additional 3rd party software. We are evaluating bzip2, cryptopp, glut, libidn, libpng,
miniupnpc, Python, sphinx, yasm, and zlib. We have incorporated bzip2 into Laci and
are in the process of incorporating libpng. cryptopp is a windows-only package, and
thus is currently excluded. The glut package is 15 years old and has linking problems,
possibly depending on old libraries. After the other packages have been evaluated
we may return to it if more are needed. The remaining packages will be evaluated
and added subsequently. [Note that our focus is on Linux executables.]

We are adding additional programs as we find suitable candidates. The key criteria for
including a program are the availability of (1) openly available source so that we can build
and test it in a variety of environments and (2) a reasonably strong test suite (because it
would be a substantial tax on this project to create such test suites ourselves).

We are investigating the use of automated test-case generation via concolic execution as
implemented in GrammaTech’s Grace research tool. The application of Grace to coreutils
packages is part of a different contract at GrammaTech. Research carried out under that
contract may be able to provide a comparison of the quality of coverage of coreutils test
suite with that of our concolic engine Grace. If Grace provides deeper coverage, we may
choose to use it for validating our transformations. If Laci includes aggressive
transformations that are not always safe, the project may choose to rely on automated test-
case generation, as the availability of comprehensive test suites cannot be expected of all
applications to be transformed. Concolic execution is a promising approach to this problem.

5 Goals for the next reporting period

In the next reporting period we expect to begin or complete the following (see the
milestones table for dates):

 Begin the dynamic to static procedure transformation.

 Complete the evaluation of the UW technology.

 Complete the investigation of procedure inlining.

 Continue the assessment of specialization and partial evaluation technologies and
implementations, converting relevant software to our use.

 Continue to add benchmarks and associated test cases to the testing suite

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

18

Data Subject to Restrictions on Cover Page.

6 Milestones
Interim results on multi-month tasks will be reported in the quarterly progress reports.

Milestone
Planned
Start date

Planned Delivery/
Completion Date

Actual Delivery/ Completion
Date

Kickoff meeting As scheduled by
Technical Monitor

Phone discussion in January
2013; TM declined to
schedule a more in-depth
discussion

Evaluation of structure and
code quality of UW technology
(task 1.1)

10/2012 11/30/2012 11/30/2012

First Quarterly report (task 5) 1/3/2013 1/7/2013

Investigate and implement
dead-code removal of entire
functions(task 3)

12/2012 3/31/2013 3/2013

Implement a testable working
prototype with the null-
transform option (the
foundation for tasks 2 and 4)

12/2013 2/28/2013 2/2013

Continuing task: Identify
failures resulting from incorrect
IR; correspondingly improve or
repair the IR recovery
techniques. (tasks 1.2 and 2.1)

12/2012 9/24/2013, with
all individual
improvements
noted in quarterly
reports

Ongoing task with continuous
improvements

Identify common coding idioms
and compiler transformations
that result in incorrect
disassembly (task 2.1)

1/2012 2/15/2012 2/28/2012, with additional
improvements as
opportunities are identified

Implement a testing
infrastructure (task 2.3 and task
4)

1/2013 2/28/2012 2/2013

Design and implement the IR
editing infrastructure (task 2).

1/2013 4/30/2013

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

19

Data Subject to Restrictions on Cover Page.

Evaluation of performance and
precision of UW technology
(task 1.1)

2/2013 3/31/2013 Still in progress

Develop real-world and
synthetic benchmarks to
evaluate performance (task 4).

2/2013 9/24/2013, with
interim progress
each month

2/2013 (infrastructure in
place; adding additional tests
is an ongoing task)

Investigate disassembly
improvements such as learning-
based bottom-up disassembly
and all-leads disassembly (task
2.1)

3/2013 5/31/2013

Investigate selective inlining of
library functions (task 3.1)

3/2013 7/31/2013

Second quarterly report (task 5) 4/3/2013 4/3/2013

Investigate finding and deleting
functionally dead code,
possibly using slicing and
specialization (task 2.2 and
3.2).

4/2013 8/31/2013

Investigate specialization to
target platforms or target
environments (task 3.2)

4/2013 8/31/2013

Implement aspects of the
chosen disassembly extensions
(task 2.1)

5/2013 8/31/2013

Evaluate hybrid analyses as a
complement to static analyses
for recovering IR (Task 1.2)

5/2013 8/31/2013

Third quarterly report (task 5) 7/3/2013

Measure the performance
tradeoff of various
optimizations and evaluate the
overall tool (task 2.3 and 4)

7/2013 9/24/2013

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #2 © GrammaTech, Inc. 2013

20

Data Subject to Restrictions on Cover Page.

7 Issues requiring Government attention
The request to change PI on the project (from David Melski to David Cok) was verbally
approved (in January), but the corresponding contracting paperwork has not been received
by GrammaTech.

Investigate options for handling
DLLs (task 2.4)

8/2013 9/24/2013

Final report (task 5) 10/24/2012
(contract end
date)

